Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury

Author:

Zager Richard A.1,Johnson Ali C. M.1

Affiliation:

1. Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington

Abstract

Rhabdomyolysis (Fe)-induced acute renal failure (ARF) causes renal inflammation, and, with repetitive insults, progressive renal failure can result. To gain insights into these phenomena, we assessed the impact of a single episode of glycerol-induced rhabdomyolysis on proinflammatory/profibrotic [TNF-α, monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-β1 (TGF-β1)] gene expression and the time course of these changes. CD-1 mice were studied 1–7 days after glycerol injection. Normal mice served as controls. RNA polymerase II (Pol II) binding to the TNF-α, MCP-1, and TGF-β1 genes, “gene-activating” histone modifications [histone 3 lysine 4 (H3K4) trimethylation (H3K4m3) and histone 2 variant H2A.Z], and cognate mRNA levels were assessed. Results were contrasted to changes in anti-inflammatory heme oxygenase-1 (HO-1). Glycerol produced severe ARF (blood urea nitrogen ∼150–180 mg/dl) followed by marked improvement by day 7 (blood urea nitrogen ∼40 mg/dl). Early increases in TNF-α, MCP-1, and TGF-β1 mRNAs, Pol II gene binding, and H3K4m3/H2A.Z levels were observed. These progressed with time, despite resolution of azotemia. Comparable early HO-1 changes were observed. However, HO-1 mRNA normalized by day 7, and progressive Pol II binding/histone alterations did not occur. Fe-mediated injury to cultured proximal tubule (HK-2) cells recapitulated these in vivo results. Hence, this in vitro model was used for mechanistic assessments. On the basis of these studies, it was determined that 1) the H3K4m3/H2A.Z increases are early events (i.e., they precede mRNA increases), 2) subsequent mRNA elevations reflect transcription, not mRNA stabilization (actinomycin D assessments), and 3) increased transcription, per se, helps sustain elevated H2A.Z levels. We conclude that 1) Fe/glycerol-induced tubular injury causes sustained proinflammatory gene activation, 2) decreasing HO-1 expression, as reflected by mRNA levels, may facilitate this proinflammatory state, and 3) gene-activating histone modifications are early injury events and progressively increase at selected proinflammatory genes. Thus they may help sustain a proinflammatory state, despite resolving ARF.

Publisher

American Physiological Society

Subject

Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3