Muscle-derived ROS and thiol regulation in muscle fatigue

Author:

Ferreira Leonardo F.,Reid Michael B.

Abstract

Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3