Exercise training alters length dependence of contractile properties in rat myocardium

Author:

Diffee Gary M.1,Nagle Daniel F.1

Affiliation:

1. Biodynamics Laboratory, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca2+, and this Ca2+ sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca2+concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 μm). We found an increased sarcomere length dependence of both maximal tension and pCa50 (the Ca2+ concentration giving 50% of maximal tension) in T compared with C myocytes. The ΔpCa50 between the long and short sarcomere length was 0.084 ± 0.023 (mean ± SD) in myocytes from C hearts compared with 0.132 ± 0.014 in myocytes from T hearts ( n = 50 myocytes per group). The Δmaximal tension was 5.11 ± 1.42 kN/m2 in C myocytes and 9.01 ± 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3