Affiliation:
1. Biodynamics Laboratory, University of Wisconsin, Madison, Wisconsin 53706
Abstract
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca2+, and this Ca2+ sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca2+concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 μm). We found an increased sarcomere length dependence of both maximal tension and pCa50 (the Ca2+ concentration giving 50% of maximal tension) in T compared with C myocytes. The ΔpCa50 between the long and short sarcomere length was 0.084 ± 0.023 (mean ± SD) in myocytes from C hearts compared with 0.132 ± 0.014 in myocytes from T hearts ( n = 50 myocytes per group). The Δmaximal tension was 5.11 ± 1.42 kN/m2 in C myocytes and 9.01 ± 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献