Nasal high flow reduces dead space

Author:

Möller Winfried12ORCID,Feng Sheng3,Domanski Ulrike4,Franke Karl-Josef4,Celik Gülnaz12,Bartenstein Peter5,Becker Sven6,Meyer Gabriele7,Schmid Otmar12,Eickelberg Oliver128,Tatkov Stanislav3,Nilius Georg4

Affiliation:

1. Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany;

2. Institute of Lung Biology and Disease, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany;

3. Fisher & Paykel Healthcare, Auckland, New Zealand;

4. HELIOS Klinik Hagen-Ambrock, Witten-Herdecke University, Hagen, Germany;

5. Department of Nuclear Medicine, LMU Medical Center Grosshadern, Munich, Germany;

6. Department of Otolaryngology, Head and Neck Surgery, LMU Medical Center Grosshadern, Munich, Germany;

7. Department of Nuclear Medicine, Asklepios Fachkliniken München-Gauting, Gauting, Germany; and

8. University Hospital of the Ludwig Maximilian University, Munich, Germany

Abstract

Recent studies show that nasal high flow (NHF) therapy can support ventilation in patients with acute or chronic respiratory disorders. Clearance of dead space has been suggested as being the key mechanism of respiratory support with NHF therapy. The hypothesis of this study was that NHF in a dose-dependent manner can clear dead space of the upper airways from expired air and decrease rebreathing. The randomized crossover study involved 10 volunteers using scintigraphy with 81mKrypton (81mKr) gas during a breath-holding maneuver with closed mouth and in 3 nasally breathing tracheotomized patients by volumetric capnography and oximetry through sampling CO2 and O2 in the trachea and measuring the inspired volume with inductance plethysmography following NHF rates of 15, 30, and 45 l/min. The scintigraphy revealed a decrease in 81mKr gas clearance half-time with an increase of NHF in the nasal cavities [Pearson’s correlation coefficient cc = −0.55, P < 0.01], the pharynx (cc = −0.41, P < 0.01), and the trachea (cc = −0.51, P < 0.01). Clearance rates in nasal cavities derived from time constants and MRI-measured volumes were 40.6 ± 12.3 (SD), 52.5 ± 17.7, and 72.9 ± 21.3 ml/s during NHF (15, 30, and 45 l/min, respectively). Measurement of inspired gases in the trachea showed an NHF-dependent decrease of inspired CO2 that correlated with an increase of inspired O2 (cc = −0.77, P < 0.05). NHF clears the upper airways of expired air, which reduces dead space by a decrease of rebreathing making ventilation more efficient. The dead space clearance is flow and time dependent, and it may extend below the soft palate. NEW & NOTEWORTHY Clearance of expired air in upper airways by nasal high flow (NHF) can be extended below the soft palate and de facto causes a reduction of dead space. Using scintigraphy, the authors found a relationship between NHF, time, and clearance. Direct measurement of CO2 and O2 in the trachea confirmed a reduction of rebreathing, providing the actual data on inspired gases, and this can be used for the assessment of other forms of respiratory support.

Funder

Fisher & Paykel Healthcare, Auckland, New Zealand

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3