Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action

Author:

Dalbram Emilie1,Basse Astrid L.1,Zierath Juleen R.12,Treebak Jonas T.1ORCID

Affiliation:

1. Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark

2. Integrative Physiology, Department of Molecular Medicine and Surgery and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

Abstract

Metabolic dysfunction and Type 2 diabetes are associated with perturbed circadian rhythms. However, exercise appears to ameliorate circadian disturbances, as it can phase-shift or reset the internal clock system. Evidence is emerging that exercise at a distinct time of day can correct misalignments of the circadian clock and influence energy metabolism. This suggests that timing of exercise training can be important for the prevention and management of metabolic dysfunction. In this study, obese, high-fat diet-fed mice were subjected to voluntary wheel running (VWR) at two different periods of the day to determine the effects of time-of-day-restricted VWR on basal and insulin-stimulated glucose disposal. VWR in the late dark phase reduced body weight gain compared with VWR in the beginning of the dark phase. Conversely, time-of-day-restricted VWR did not influence insulin action and glucose disposal, since skeletal muscle and adipose tissue glucose uptake and insulin signaling remained unaffected. Protein abundance of the core clock proteins, brain-muscle arnt-like 1 (BMAL1), and circadian locomotor output control kaput (CLOCK), were increased in skeletal muscle after VWR, independent of whether mice had access to running wheels in the early or late dark phase. Collectively, we provide evidence that VWR in the late dark phase ameliorates diet-induced obesity without altering insulin action or glucose homeostasis. NEW & NOTEWORTHY Exercise appears to ameliorate circadian disturbances as it can entrain the internal clock system. We provide evidence that voluntary wheel running increases core clock protein abundance and influences diet-induced obesity in mice in a time-of-day-dependent manner. However, the effect of time-of-day-restricted voluntary wheel running on body weight gain is not associated with enhanced basal- and insulin-stimulated glucose disposal, suggesting that time-of-day-restricted voluntary wheel running affects energy homeostasis rather than glucose homeostasis.

Funder

Novo Nordisk Foundation, Challenge Grant

Novo Nordisk Foundation, Excellence Project Award

Danish Council for Independent Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3