Sound-evoked vestibular projections to the splenius capitis in humans: comparison with the sternocleidomastoid muscle

Author:

Rosengren Sally M.12ORCID,Weber Konrad P.34ORCID,Govender Sendhil5,Welgampola Miriam S.2,Dennis Danielle L.5,Colebatch James G.5ORCID

Affiliation:

1. Neurology Department, Royal Prince Alfred Hospital, Camperdown, Australia

2. Central Clinical School, University of Sydney, Sydney, Australia

3. Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland

4. Department of Ophthalmology, University Hospital Zurich, University of Zurich, Switzerland

5. Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney, Australia

Abstract

The short-latency vestibulo-collic reflex in humans is well defined for only the sternocleidomastoid (SCM) neck muscle. However, other neck muscles also receive input from the balance organs and participate in neck stabilization. We therefore investigated the sound-evoked vestibular projection to the splenius capitis (SC) muscles by comparing surface and single motor unit responses in the SC and SCM muscles in 10 normal volunteers. We also recorded surface responses in patients with unilateral vestibular loss but preserved hearing and hearing loss but preserved vestibular function. The single motor unit responses were predominantly inhibitory, and the strongest responses were recorded in the contralateral SC and ipsilateral SCM. In both cases there was a significant decrease or gap in single motor unit activity, in SC at 11.7 ms for 46/66 units and in SCM at 12.7 ms for 51/58 motor units. There were fewer significant responses in the ipsilateral SC and contralateral SCM muscles, and they consisted primarily of weak increases in activity. Surface responses recorded over the contralateral SC were positive-negative during neck rotation, similar to the ipsilateral cervical vestibular evoked myogenic potential in SCM. Responses in SC were present in the patients with hearing loss and absent in the patient with vestibular loss, confirming their vestibular origin. The results describe a pattern of inhibition consistent with the synergistic relationship between these muscles for axial head rotation, with the crossed vestibular projection to the contralateral SC being weaker than the ipsilateral projection to the SCM. NEW & NOTEWORTHY We used acoustic vestibular stimulation to investigate the saccular projections to the splenius capitis (SC) and sternocleidomastoid (SCM) muscles in humans. Single motor unit recordings from within the muscles demonstrated strong inhibitory projections to the contralateral SC and ipsilateral SCM muscles and weak excitatory projections to the opposite muscle pair. This synergistic pattern of activation is consistent with a role for the reflex in axial rotation of the head.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3