NK cell function is impaired during long-duration spaceflight

Author:

Bigley Austin B.12,Agha Nadia H.2,Baker Forrest L.123,Spielmann Guillaume24,Kunz Hawley E.25,Mylabathula Preteesh L.123,Rooney Bridgette V.25,Laughlin Mitzi S.2,Mehta Satish K.5,Pierson Duane L.5,Crucian Brian E.5,Simpson Richard J.1236

Affiliation:

1. Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona

2. Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas

3. Department of Pediatrics, The University of Arizona, Tucson, Arizona

4. School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana

5. National Aeronautics and Space Administration Johnson Space Center, Houston, Texas

6. Department of Immunobiology, The University of Arizona, Tucson, Arizona

Abstract

Maintaining astronaut health during space travel is paramount for further human exploration of the solar system beyond Earth’s orbit. Of concern are potential dysregulations in immunity, which could increase the likelihood of cancer and latent viral reactivation. Natural killer (NK) cells are critical effectors of the innate immune system, and their function and phenotype are important to immunosurveillance of nascent tumors and latent viral infections. We compared changes in NK cell phenotype and function in eight crew members who completed an ~6-mo mission to the International Space Station (ISS) with healthy controls who remained on Earth. Assessments were made before (180 and 60 days before launch), during [flight day + 90 days (FD+90) and 1 day before return (R−1)], and after the mission (at R+0, R+18, R+33, and R+66). These samples, plus an additional in-flight sample (FD+180), were collected from a crew member who spent 340 days (~1 yr) on the ISS. NK cell cytotoxic activity (NKCA) against K562 leukemia targets in vitro was reduced by ~50% at FD+90 in ISS crew but not controls. This decrease was more pronounced in “rookie” compared with “veteran” crew members. The ~1-yr mission crew member did not show declines in NKCA against K562 until late in the mission (R−1 and R+0). NK cell numbers, expression of activating and inhibitory receptors, target cell binding, and expression and degranulation of perforin and granzyme B were unaltered with spaceflight. Similarly, when we exposed an immortalized NK cell line (NK-92) to sera collected at different mission time points (before, during, and after flight), there was no effect on NKCA. This is the first study to report impaired NK cell function during long-duration space travel. Countermeasures may be needed to mitigate immune system impairment in exploration class mission crew during long-duration spaceflight missions. NEW & NOTEWORTHY Immune system impairment may inhibit future human space exploration missions to Mars. Natural killer (NK) cells are key components of immunity and vital for tumor surveillance and the prevention of latent virus reactivation. We report that NK cell function is impaired in astronauts during an ~6-mo orbital space mission compared with preflight levels and ground-based controls. Declines in NK cell function were more marked in first-time “rookie” fliers. Countermeasures are needed to preserve NK cell-mediated immunity during spaceflight.

Funder

NASA

NSBRI

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3