Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults

Author:

Arentson-Lantz Emily J.12,English Kirk L.12,Paddon-Jones Douglas123,Fry Christopher S.123

Affiliation:

1. Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas;

2. Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas;

3. Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas

Abstract

Bed rest, a ground-based spaceflight analog, induces robust atrophy of skeletal muscle, an effect that is exacerbated with increasing age. We examined the effect of 14 days of bed rest on skeletal muscle satellite cell content and fiber type atrophy in middle-aged adults, an understudied age demographic with few overt signs of muscle aging that is representative of astronauts who perform long-duration spaceflight. Muscle biopsies were obtained from the vastus lateralis of healthy middle-aged adults [ n = 7 (4 male, 3 female); age: 51 ± 1 yr] before (Pre-BR) and after (Post-BR) 14 days of bed rest. Immunohistochemical analyses were used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area (CSA), satellite cell and myonuclear content, and capillary density. Peak oxygen consumption, knee extensor strength, and body composition were also measured Pre-BR and Post-BR. Post-BR MyHC type 2a fiber percentage was reduced, and mean CSA decreased in all fiber types (−24 ± 5%; P < 0.05). Satellite cell content was also reduced Post-BR (−39 ± 9%; P < 0.05), and the change in satellite cell content was significantly correlated with the change in mean fiber CSA ( r2 = 0.60; P < 0.05). A decline in capillary density was observed Post-BR (−23 ± 6%; P < 0.05), and Post-BR capillary content was significantly associated with Post-BR peak aerobic capacity ( r2 = 0.59; P < 0.05). A subtle decline in myonuclear content occurred during bed rest (−5 ± 1%; P < 0.05). The rapid maladaptation of skeletal muscle to 14 days of mechanical unloading in middle-aged adults emphasizes the need for robust countermeasures to preserve muscle function in astronauts.

Funder

HHS | NIH | National Institute of Nursing Research (NINR)

NSBRI

HHS | NIH | NICHD | National Center for Medical Rehabilitation Research (NCMRR)

HHS | NIH | National Institute on Aging (U.S. National Institute on Aging)

HHS | NIH | National Center for Research Resources (NCRR)

HHS | NIH | National Center for Advancing Translational Sciences (NCATS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3