Measuring lung function in mice: the phenotyping uncertainty principle

Author:

Bates Jason H. T.1,Irvin Charles G.1

Affiliation:

1. Vermont Lung Center and College of Medicine, University of Vermont, Burlington, Vermont 05405

Abstract

Measuring lung function in mice is essential for establishing the relevance of murine models to human lung disease. However, making such measurements presents particular technical challenges due to the small size of the animal, particularly with regard to the measurement of respiratory flows. In this review, we examine the various methods currently available for assessment of lung function in mice and contrast them in terms of a concept we call the phenotyping uncertainty principle; each method can be considered to lie somewhere along a continuum on which noninvasiveness must be traded off against experimental control and measurement precision. Unrestrained plethysmography in conscious mice represents the extreme of noninvasiveness and is highly convenient but provides respiratory measures that are so tenuously linked to respiratory mechanics that they cannot be considered as meaningful indicators of lung function. At the other extreme, the measurement of input impedance in anesthetized, paralyzed, tracheostomized mice is precise and specific but requires that an animal be studied under conditions far from natural. In between these two extremes lie methods that sacrifice some precision for a reduction in the level of invasiveness, a promising example being the measurement of transfer impedance in conscious, restrained mice. No method is optimal in all regards; therefore, the appropriate technique to use depends on the application.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3