Hypoxic pulmonary vasoconstriction

Author:

Moudgil Rohit,Michelakis Evangelos D.,Archer Stephen L.

Abstract

Humans encounter hypoxia throughout their lives. This occurs by destiny in utero, through disease, and by desire, in our quest for altitude. Hypoxic pulmonary vasoconstriction (HPV) is a widely conserved, homeostatic, vasomotor response of resistance pulmonary arteries to alveolar hypoxia. HPV mediates ventilation-perfusion matching and, by reducing shunt fraction, optimizes systemic Po2. HPV is intrinsic to the lung, and, although modulated by the endothelium, the core mechanism is in the smooth muscle cell (SMC). The Redox Theory for the mechanism of HPV proposes the coordinated action of a redox sensor (the proximal mitochondrial electron transport chain) that generates a diffusible mediator [a reactive O2species (ROS)] that regulates an effector protein [voltage-gated potassium (Kv) and calcium channels]. A similar mechanism for regulating O2uptake/distribution is partially recapitulated in simpler organisms and in the other specialized mammalian O2-sensitive tissues, including the carotid body and ductus arteriosus. Inhibition of O2-sensitive Kvchannels, particularly Kv1.5 and Kv2.1, depolarizes pulmonary artery SMCs, activating voltage-gated Ca2+channels and causing Ca2+influx and vasoconstriction. Downstream of this pathway, there is important regulation of the contractile apparatus' sensitivity to calcium by rho kinase. Controversy remains as to whether hypoxia decreases or increases ROS and which electron transport chain complex generates the ROS (I and/or III). Possible roles for cyclic adenosine diphosphate ribose and an unidentified endothelial constricting factor are also proposed by some groups. Modulation of HPV has therapeutic relevance to cor pulmonale, high-altitude pulmonary edema, and sleep apnea. HPV is clinically exploited in single-lung anesthesia, and its mechanisms intersect with those of pulmonary arterial hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference136 articles.

1. Differential K+ Channel Distribution in Smooth Muscle Cells Isolated from the Pulmonary Arterial Tree of the Rat

2. Archer Sand Michelakis E.The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O2sensors, and controversies.News Physiol Sci17: 131–137, 2002.

3. Archer S, Will J, and Weir E.Redox status in the control of pulmonary vascular tone.Herz11: 127–141, 1986.

4. Dithionite Increases Radical Formation and Decreases Vasoconstriction in the Lung

5. A redox-based O2 sensor in rat pulmonary vasculature.

Cited by 378 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3