Regional effects of low-intensity endurance training on structural and mechanical properties of rat ventricular myocytes

Author:

Carneiro-Júnior Miguel Araujo1,Prímola-Gomes Thales Nicolau2,Quintão-Júnior Judson Fonseca2,Drummond Lucas Rios2,Lavorato Victor Neiva2,Drummond Filipe Rios2,Felix Leonardo Bonato3,Oliveira Edilamar Menezes4,Cruz Jader Santos5,Natali Antonio José2,Mill José Geraldo1

Affiliation:

1. Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil;

2. Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil;

3. Department of Electrical Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil;

4. School of Physical Education and Sport, Laboratory of Biochemistry and Molecular Biology of the Exercise, University of São Paulo, São Paulo, Brazil; and

5. Department of Biochemistry and Immunology, Laboratory of Excitable Membranes and Cardiovascular Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Abstract

We tested the effects of low-intensity endurance training (LIET) on the structural and mechanical properties of right (RV) and left ventricular (LV) myocytes. Male Wistar rats (4 mo old) were randomly divided into control (C, n = 7) and trained (T, n = 7, treadmill running at 50–60% of maximal running speed for 8 wk) groups. Isolated ventricular myocyte dimensions, contractility, Ca2+ transients {intracellular Ca2+ concentration ([Ca2+]i)}, and ventricular [Ca2+]i regulatory proteins were measured. LIET augmented cell length (C, 152.5 ± 2.0 μm vs. T, 162.2 ± 2.1 μm; P < 0.05) and volume (C, 5,162 ± 131 μm3 vs. T, 5,506 ± 132 μm3; P < 0.05) in the LV but not in the RV. LIET increased cell shortening (C, 7.5 ± 0.3% vs. T, 8.6 ± 0.3%; P < 0.05), the [Ca2+]i transient amplitude (C, 2.49 ± 0.06 F/F0 vs. T, 2.82 ± 0.06 F/F0; P < 0.05), the expression of sarcoplasmic reticulum Ca2+-ATPase 2a (C, 1.07 ± 0.13 vs. T, 1.59 ± 0.12; P < 0.05), and the levels of phosphorylated phospholamban at serine 16 (C, 0.99 ± 0.11 vs. T, 1.34 ± 0.10; P < 0.05), and reduced the total phospholamban-to-sarcoplasmic reticulum Ca2+-ATPase 2a ratio (C, 1.19 ± 0.15 vs. T, 0.40 ± 0.16; P < 0.05) in the LV without changing such parameters in the RV. In conclusion, LIET affected the structure and improved the mechanical properties of LV but not of RV myocytes in rats, helping to characterize the functional and morphological changes that accompany the endurance training-induced cardiac remodeling.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3