Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans

Author:

Bailey Stephen J.1,Romer Lee M.2,Kelly James1,Wilkerson Daryl P.1,DiMenna Fred J.1,Jones Andrew M.1

Affiliation:

1. School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon, United Kingdom; and

2. Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, United Kingdom

Abstract

Fatigue of the respiratory muscles during intense exercise might compromise leg blood flow, thereby constraining oxygen uptake (V̇o2) and limiting exercise tolerance. We tested the hypothesis that inspiratory muscle training (IMT) would reduce inspiratory muscle fatigue, speed V̇o2 kinetics and enhance exercise tolerance. Sixteen recreationally active subjects (mean ± SD, age 22 ± 4 yr) were randomly assigned to receive 4 wk of either pressure threshold IMT [30 breaths twice daily at ∼50% of maximum inspiratory pressure (MIP)] or sham treatment (60 breaths once daily at ∼15% of MIP). The subjects completed moderate-, severe- and maximal-intensity “step” exercise transitions on a cycle ergometer before (Pre) and after (Post) the 4-wk intervention period for determination of V̇o2 kinetics and exercise tolerance. There were no significant changes in the physiological variables of interest after Sham. After IMT, baseline MIP was significantly increased (Pre vs. Post: 155 ± 22 vs. 181 ± 21 cmH2O; P < 0.001), and the degree of inspiratory muscle fatigue was reduced after severe- and maximal-intensity exercise. During severe exercise, the V̇o2 slow component was reduced (Pre vs. Post: 0.60 ± 0.20 vs. 0.53 ± 0.24 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 765 ± 249 vs. 1,061 ± 304 s; P < 0.01). Similarly, during maximal exercise, the V̇o2 slow component was reduced (Pre vs. Post: 0.28 ± 0.14 vs. 0.18 ± 0.07 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 177 ± 24 vs. 208 ± 37 s; P < 0.01). Four weeks of IMT, which reduced inspiratory muscle fatigue, resulted in a reduced V̇o2 slow-component amplitude and an improved exercise tolerance during severe- and maximal-intensity exercise. The results indicate that the enhanced exercise tolerance observed after IMT might be related, at least in part, to improved V̇o2 dynamics, presumably as a consequence of increased blood flow to the exercising limbs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3