Mechanical properties of the airway tree: heterogeneous and anisotropic pseudoelastic and viscoelastic tissue responses

Author:

Eskandari Mona12,Arvayo Alberto L.2,Levenston Marc E.23

Affiliation:

1. Department of Mechanical Engineering, University of California at Riverside, Riverside, California

2. Department of Mechanical Engineering, Stanford University, Stanford, California

3. Department of Bioengineering, Stanford University, Stanford, California

Abstract

Airway obstruction and pulmonary mechanics remain understudied despite lung disease being the third cause of death in the United States. Lack of relevant data has led computational pulmonary models to infer mechanical properties from available material data for the trachea. Additionally, the time-dependent, viscoelastic behaviors of airways have been largely overlooked, despite their potential physiological relevance and utility as metrics of tissue remodeling and disease progression. Here, we address the clear need for airway-specific material characterization to inform biophysical studies of the bronchial tree. Specimens from three airway levels (trachea, large bronchi, and small bronchi) and two orientations (axial and circumferential) were prepared from five fresh pig lungs. Uniaxial tensile tests revealed substantial heterogeneity and anisotropy. Overall, the linear pseudoelastic modulus was significantly higher axially than circumferentially (30.5 ± 3.1 vs. 8.4 ± 1.1 kPa) and significantly higher among circumferential samples for small bronchi than for the trachea and large bronchi (12.5 ± 1.9 vs. 6.0 ± 0.6 and 6.6 ± 0.9 kPa). Circumferential samples exhibited greater percent stress relaxation over 300 s than their axial counterparts (38.0 ± 1.4 vs. 23.1 ± 1.5%). Axial and circumferential trachea samples displayed greater percent stress relaxation (26.4 ± 1.6 and 42.5 ± 1.7%) than corresponding large and small bronchi. This ex vivo pseudoelastic and viscoelastic characterization reveals novel anisotropic and heterogeneous behaviors and equips us to construct airway-specific constitutive relations. Our results establish necessary fundamentals for airway mechanics, laying the groundwork for future studies to extend to clinical questions surrounding lung injury, and further directly enables computational tools for lung disease obstruction predictions. NEW & NOTEWORTHY Understanding the mechanics of the lung is necessary for investigating disease progression. Trachea mechanics comprises the vast majority of ex vivo airway tissue characterization despite distal airways being the site of disease manifestation and occlusion. Furthermore, viscoelastic studies are scarce, whereas time-dependent behaviors could be potential physiological metrics of tissue remodeling. In this study, the critical need for airway-specific material properties is addressed, reporting bronchial tree anisotropic and heterogeneous material properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3