Changes in extracellular collagen matrix alter myocardial systolic performance

Author:

Baicu Catalin F.1,Stroud Jason D.1,Livesay Virginia A.1,Hapke Elizabeth1,Holder Jennifer2,Spinale Francis G.2,Zile Michael R.1

Affiliation:

1. Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina and the Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston 29401; and

2. Cardiothoracic Surgery Division, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425-5799

Abstract

The purpose of this study was to test the hypothesis that acute disruption of fibrillar collagen will decrease myocardial systolic performance without changing cardiomyocyte contractility. Isolated papillary muscles were treated either with plasmin (0.64 U/ml, 240 min) or untreated and served as same animal control. Plasmin treatment caused matrix metalloproteinase activation and collagen degradation as measured by gelatin zymography, hydroxyproline assays, and scanning electron microscopy. Plasmin caused a significant decrease in myocardial systolic performance. Isotonic shortening extent and isometric developed tension decreased from 0.17 ± 0.01 muscle length (ML) and 45 ± 4 mN/mm2 in untreated muscles to 0.09 ± 0.01 ML and 36 ± 3 mN/mm2 in treated muscles ( P < 0.05). However, plasmin treatment (0.64 U/ml, 240 min) did not alter shortening extent or velocity in isolated cardiomyocytes. Acute disruption of the fibrillar collagen network caused a decrease in myocardial systolic performance without changing cardiomyocyte contractility. These data support the hypothesis that fibrillar collagen facilitates transduction of cardiomyocyte contraction into myocardial force development and helps to maintain normal myocardial systolic performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3