Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium

Author:

Costa Kevin D.1,Takayama Yasuo2,McCulloch Andrew D.3,Covell James W.4

Affiliation:

1. Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110;

2. Department of Internal Medicine, Kansai Medical University, Kyoto, Japan; and Departments of

3. Bioengineering and

4. Medicine, University of California, San Diego, La Jolla, California 92093

Abstract

Previous studies suggest that the laminar architecture of left ventricular myocardium may be critical for normal ventricular mechanics. However, systolic three-dimensional deformation of the laminae has never been measured. Therefore, end-systolic finite strains relative to end diastole, from biplane radiography of transmural markers near the apex and base of the anesthetized open-chest canine anterior left ventricular free wall ( n = 6), were referred to three-dimensional laminar microstructural axes reconstructed from histology. Whereas fiber shortening was uniform [−0.07 ± 0.04 (SD)], radial wall thickening increased from base (0.10 ± 0.09) to apex (0.14 ± 0.13). Extension of the laminae transverse to the muscle fibers also increased from base (0.08 ± 0.07) to apex (0.11 ± 0.08), and interlaminar shear changed sign [0.05 ± 0.07 (base) and −0.07 ± 0.09 (apex)], reflecting variations in laminar architecture. Nevertheless, the apex and base were similar in that at each site laminar extension and shear contributed ∼60 and 40%, respectively, of mean transmural thickening. Kinematic considerations suggest that these dual wall-thickening mechanisms may have distinct ultrastructural origins.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3