Control of oxidative stress in microcirculation of spontaneously hypertensive rats

Author:

DeLano F. A.,Balete R.,Schmid-Schönbein G. W.

Abstract

One mechanism for organ damage in individuals with arterial hypertension may be due to oxygen free radical production. This study was designed to localize free radicals in a microvascular network of mature spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. Because glucocorticoids play a role in pressure elevation of SHRs, we investigated their role in microvascular free radical formation. Oxygen radical production in mesentery was detected by tetranitroblue tetrazolium reduction to formazan aided by digital light-absorption measurements. Formazan deposits were observed in the endothelial cells and lumens of all microvessels and in lymphatic endothelia but were fewer in tissue parenchyma. The formazan distribution in younger (14–16 wk old) WKY rats and SHRs was heterogeneous with low values in capillaries and small arterioles/venules (<30 μm) but enhanced deposits in larger venules. Adrenalectomy served to reduce the formazan density in SHRs to the level of WKY rats, whereas dexamethasone supplementation of the adrenalectomized rats caused elevation in the larger venules of SHRs. In older (40 wk old) SHRs, formazan levels were elevated in all hierarchies of microvessels. After pressure reduction was employed with chronic hydralazine treatment, the formazan deposits were reduced in all locations of the microcirculation in both WKY rats and SHRs. Elevated formazan deposits were also found in lymphatic endothelium. These results suggest that oxygen free radical production is elevated in both high- and low-pressure regions of SHR microcirculation via a process that is controlled by glucocorticoids. Older SHRs have higher formazan levels than younger SHRs in all microvessels. Chronic hydralazine treatment, which serves to reduce arterial blood pressure, attenuates tetranitroblue tetrazolium reduction in WKY rats and SHRs even in venules of the microcirculation, which has no micropressure elevation. Free radical production may be a more global condition in SHRs and may not be limited to arteries and arterioles.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3