Differential expression of small-conductance Ca2+-activated K+channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes

Author:

Tuteja Dipika,Xu Danyan,Timofeyev Valeriy,Lu Ling,Sharma Dipika,Zhang Zhao,Xu Yanfang,Nie Liping,Vázquez Ana E,Young J. Nilas,Glatter Kathryn A.,Chiamvimonvat Nipavan

Abstract

Small-conductance Ca2+-activated K+channels (SK channels, KCachannels) have been reported in excitable cells, where they aid in integrating changes in intracellular Ca2+with membrane potential. We recently reported for the first time the functional existence of SK2 (KCa2.2) channels in human and mouse cardiac myocytes. Here, we report cloning of SK1 (KCa2.1) and SK3 (KCa2.3) channels from mouse atria and ventricles using RT-PCR. Full-length transcripts and their variants were detected for both SK1 and SK3 channels. Variants of mouse SK1 channel (mSK1) differ mainly in the COOH-terminal structure, affecting a portion of the sixth transmembrane segment (S6) and the calmodulin binding domain (CaMBD). Mouse SK3 channel (mSK3) differs not only in the number of polyglutamine repeats in the NH2terminus but also in the intervening sequences between the polyglutamine repeats. Full-length cardiac mSK1 and mSK3 show 99 and 91% nucleotide identity with those of mouse colon SK1 and SK3, respectively. Quantification of SK1, SK2, and SK3 transcripts between atria and ventricles was performed using real-time quantitative RT-PCR from single, isolated cardiomyocytes. SK1 transcript was found to be more abundant in atria compared with ventricles, similar to the previously reported finding for SK2 channel. In contrast, SK3 showed similar levels of expression in atria and ventricles. Together, our data are the first to indicate the presence of the three different isoforms of SK channels in heart and the differential expression of SK1 and SK2 in mouse atria and ventricles. Because of the marked differential expression of SK channel isoforms in heart, specific ligands for Ca2+-activated K+currents may offer a unique therapeutic opportunity to modify atrial cells without interfering with ventricular myocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3