Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model

Author:

Palau-Caballero Georgina1,Walmsley John1ORCID,Van Empel Vanessa2,Lumens Joost1,Delhaas Tammo1

Affiliation:

1. Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and

2. Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands

Abstract

Rapid leftward septal motion (RLSM) during early left ventricular (LV) diastole is observed in patients with pulmonary arterial hypertension (PAH). RLSM exacerbates right ventricular (RV) systolic dysfunction and impairs LV filling. Increased RV wall tension caused by increased RV afterload has been suggested to cause interventricular relaxation dyssynchrony and RLSM in PAH. Simulations using the CircAdapt computational model were used to unravel the mechanism underlying RLSM by mechanistically linking myocardial tissue and pump function. Simulations of healthy circulation and mild, moderate, and severe PAH were performed. We also assessed the effects on RLSM when PAH coexists with RV or LV contractile dysfunction. Our results showed prolonged RV shortening in PAH causing interventricular relaxation dyssynchrony and RLSM. RLSM was observed in both moderate and severe PAH. A negative transseptal pressure gradient only occurred in severe PAH, demonstrating that negative pressure gradient does not entirely explain septal motion abnormalities. PAH coexisting with RV contractile dysfunction exacerbated both interventricular relaxation dyssynchrony and RLSM. LV contractile dysfunction reduced both interventricular relaxation dyssynchrony and RLSM. In conclusion, dyssynchrony in ventricular relaxation causes RLSM in PAH. Onset of RLSM in patients with PAH appears to indicate a worsening in RV function and hence can be used as a sign of RV failure. However, altered RLSM does not necessarily imply an altered RV afterload, but it can also indicate altered interplay of RV and LV contractile function. Reduction of RLSM can result from either improved RV function or a deterioration of LV function. NEW & NOTEWORTHY A novel approach describes the mechanism underlying abnormal septal dynamics in pulmonary arterial hypertension. Change in motion is not uniquely induced by altered right ventricular afterload, but also by altered ventricular relaxation dyssynchrony. Extension or change in motion is a marker reflecting interplay between right and left ventricular contractility.

Funder

Dutch Heart Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3