Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts

Author:

Allard M. F.1,Schonekess B. O.1,Henning S. L.1,English D. R.1,Lopaschuk G. D.1

Affiliation:

1. Cardiovascular Research Laboratory, University of British Columbia, St. Paul's Hospital, Vancouver, Canada.

Abstract

The contribution of glycolysis and oxidative metabolism to ATP production was determined in isolated working hypertrophied hearts perfused with Krebs-Henseleit buffer containing 3% albumin, 0.4 mM palmitate, 0.5 mM lactate, and 11 mM glucose. Glycolysis and glucose oxidation were directly measured by perfusing hearts with [5–3H/U-14C]glucose and by measuring 3H2O and 14CO2 production, respectively. Palmitate and lactate oxidation were determined by simultaneous measurement of 3H2O and 14CO2 in hearts perfused with [9,10–3H]palmitate and [U-14C]lactate. At low workloads (60 mmHg aortic after-load), rates of palmitate oxidation were 47% lower in hypertrophied hearts than in control hearts, but palmitate oxidation remained the primary energy source in both groups, accounting for 55 and 69% of total ATP production, respectively. The contribution of glycolysis to ATP production was significantly higher in hypertrophied hearts (19%) than in control hearts (7%), whereas that of glucose and lactate oxidation did not differ between groups. During conditions of high work (120 mmHg aortic afterload), the extra ATP production required for mechanical function was obtained primarily from an increase in the oxidation of glucose and lactate in both groups. The contribution of palmitate oxidation to overall ATP production decreased in hypertrophied and control hearts (to 40 and 55% of overall ATP production, respectively) and was no longer significantly depressed in hypertrophied hearts. Glycolysis, on the other hand, was accelerated in control hearts to rates seen in the hypertrophied hearts. Thus a reduced contribution of fatty acid oxidation to energy production in hypertrophied rat hearts is accompanied by a compensatory increase in glycolysis during low work conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3