Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism

Author:

Collins-Nakai R. L.1,Noseworthy D.1,Lopaschuk G. D.1

Affiliation:

1. Department of Pediatrics and Pharmacology, University of Alberta, Edmonton, Canada.

Abstract

Although epinephrine is widely used clinically, its effect on myocardial energy substrate preference in the intact heart has yet to be clearly defined. We determined the effects of epinephrine on glucose and fatty acid metabolism in isolated working rat hearts perfused with 11 mM glucose, 0.4 mM palmitate, and 100 muU/ml insulin at an 11.5-mmHg left atrial preload and a 60-mmHg aortic afterload. Glycolysis and glucose oxidation were measured in hearts perfused with [5–3H]glucose and [U-14C]glucose, whereas fatty acid oxidation was measured in hearts perfused with [1–14C]palmitate. Addition of 1 microM epinephrine resulted in a 53% increase in the heart rate-developed pressure product. Glycolysis increased dramatically following addition of epinephrine (a 272% increase), as did glucose oxidation (a 410% increase). In contrast, fatty acid oxidation increased by only 10%. Epinephrine treatment did not increase the amount of oxygen required to produce an equivalent amount of ATP; however, epinephrine did increase the uncoupling between glycolysis and glucose oxidation in these fatty acid-perfused hearts, resulting in a significant increase in H+ production from glucose metabolism. Overall ATP production in epinephrine-treated hearts increased 59%. The contribution of glucose (glycolysis and glucose oxidation) to ATP production increased from 13 to 36%, which was accompanied by a reciprocal decrease in the contribution of fatty acid oxidation to ATP production from 83 to 63%. The increase in glucose oxidation was accompanied by a significant increase in pyruvate dehydrogenase complex activity in the active form. We conclude that the increase in ATP required for contractile function following epinephrine treatment occurs through a preferential increase in glucose use.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3