Ca2+-independent PLA2 controls endothelial store-operated Ca2+ entry and vascular tone in intact aorta

Author:

Boittin François-Xavier,Gribi Françoise,Serir Karima,Bény Jean-Louis

Abstract

During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3