Isolation of interstitial fluid in skin during volume expansion: evaluation of a method in pigs

Author:

Brekke H. K.12,Oveland E.3,Kolmannskog O.3,Hammersborg S. M.1,Wiig H.3,Husby P.2,Tenstad O.3,Nedrebø T.13

Affiliation:

1. Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen;

2. Department of Surgical Sciences, University of Bergen, Bergen, Norway

3. Department of Biomedicine and

Abstract

The ability to isolate interstitial fluid (IF) from skin would make it possible to study the microcirculation and proteins in this environment both during normal and pathophysiological conditions. Traditional IF sampling using implanted wicks suffer from low volumes with risk of contamination by local inflammatory, intracellular, and vascular proteins. To sample larger volumes of true IF, a recently described tissue centrifugation method was compared with dry and wet wicks from porcine skin under normal conditions and following volume expansion. With all three methods, volume expansion caused a significant lowering of interstitial colloid osmotic pressure as expected, and the fluid was similar to plasma when compared using size-exclusion HPLC. The centrifugation method was superior with respect to isolating larger amounts of true IF for further studies. Mass spectrometry of IF sampled with centrifugation showed that most of the proteins reflected the major plasma proteins with some tissue-specific proteins like decorin, gelsolin, and orosomucoid-1. Lumican, pigment epithelium-derived factor, and fatty acid-binding protein 4 were only identified in IF after volume expansion, possibly reflecting a local response to increased fluid filtration. Tissue centrifugation to collect IF from skin should be applicable to both clinical and experimental studies on IF balance during different pathophysiological conditions and interventions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3