Biaxial elastic material properties of porcine coronary media and adventitia

Author:

Pandit Aditya,Lu Xiao,Wang Chong,Kassab Ghassan S.

Abstract

The importance of mechanical stresses and strains has become well recognized in vascular physiology and pathology. To compute the stress and strain on the various components of the vessel wall, we must know the constitutive equations for the different layers of the vessel wall. The objective of the present study is to determine the constitutive equation of the coronary artery treated as a two-layer composite: intima-media and adventitial layers. Twelve hearts were obtained from a local slaughterhouse, and the right coronary artery and left anterior descending artery were dissected free from the myocardium. The vessel wall was initially mechanically tested biaxially (inflation and axial extension) as a whole (intact wall) and subsequently as intima-media or adventitial layer. A Fung-type exponential strain energy function was used to curve fit the experimental data for the intact wall and individual layers for the right coronary artery and left anterior descending artery. Two methods were used for the determination of material constants, including the Marquardt-Levenberg nonlinear least squares method and the genetic algorithm method. Our results show that there were no statistically significant differences in the material constants obtained from the two methods and that either set of elastic constants results in good fit of the data. Furthermore, at an in vivo value of axial stretch ratio, we find that the stiffness is as follows: intima-media > intact > adventitia. These results underscore the composite nature of coronary arteries with different material properties in each layer. The present results are necessary for analysis of coronary artery mechanics and to provide a fundamental understanding of vessel physiology.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3