Apelin decreases the SR Ca2+content but enhances the amplitude of [Ca2+]itransient and contractions during twitches in isolated rat cardiac myocytes

Author:

Wang Chen,Du Jun-Feng,Wu Feng,Wang Hai-Chang

Abstract

Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+content and its influence on intracellular Ca2+transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 ± 13.9% increase in sarcomere fraction shortening and a 43.6 ± 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+concentration (E[Ca2+]i) transients ( n = 14, P < 0.05). But SR Ca2+content measured by caffeine-induced [Ca2+]i(C[Ca2+]i) transient was decreased 8.41 ± 0.92% in response to apelin ( n = 14, P < 0.05). Na+/Ca2+exchanger (NCX) function was increased since half-decay time of C[Ca2+]iwas decreased 16.22 ± 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+indicator and rapid cooling as another way to measure SR Ca2+content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]iis at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3