Author:
Wang Chen,Du Jun-Feng,Wu Feng,Wang Hai-Chang
Abstract
Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+content and its influence on intracellular Ca2+transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 ± 13.9% increase in sarcomere fraction shortening and a 43.6 ± 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+concentration (E[Ca2+]i) transients ( n = 14, P < 0.05). But SR Ca2+content measured by caffeine-induced [Ca2+]i(C[Ca2+]i) transient was decreased 8.41 ± 0.92% in response to apelin ( n = 14, P < 0.05). Na+/Ca2+exchanger (NCX) function was increased since half-decay time of C[Ca2+]iwas decreased 16.22 ± 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+indicator and rapid cooling as another way to measure SR Ca2+content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]iis at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献