Cardioprotection with palm tocotrienol: antioxidant activity of tocotrienol is linked with its ability to stabilize proteasomes

Author:

Das Samarjit,Powell Saul R.,Wang Ping,Divald Andras,Nesaretnam Kalanithi,Tosaki Arpad,Cordis Gerald A.,Maulik Nilanjana,Das Dipak K.

Abstract

Tocotrienols, isomers of vitamin E, have been found to possess many health benefits. The present study was designed to determine whether tocotrienol has a direct cardioprotective role. Isolated rat hearts were perfused for 15 min with Krebs-Ringer bicarbonate buffer in the absence or presence of palm tocotrienol derived from the tocotrienol-rich fraction (0.035%) of palm oil (TRF). In another group of studies, the hearts were preperfused for 15 min in the presence of a c-Src inhibitor, 4-amino-5-(4-methylphenyl)-7-( t-butyl)-pyrazolo-3,4- d-pyrimidine (PPI). The hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. As expected, ischemia-reperfusion caused ventricular dysfunction, electrical rhythm disturbances, and increased myocardial infarct size. PPI or TRF could reverse the ischemia-reperfusion-mediated cardiac dysfunction. Ischemia-reperfusion also upregulated c-Src expression and phosphorylation. Although TRF only minimally affected c-Src expression, it significantly inhibited the phosphorylation of c-Src. Ischemia-reperfusion reduced 20S and 26S proteasome activities, an effect prevented by TRF pretreatment. PPI exerted a cardioprotective effect that is not mediated by the proteasome but, rather, through direct inhibition of c-Src. The results of this study support a role for c-Src in postischemic cardiac injury and dysfunction and demonstrate direct cardioprotective effects of TRF. The cardioprotective properties of TRF appear to be due to inhibition of c-Src activation and proteasome stabilization.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oil Palm: Genome Designing for Improved Nutritional Quality;Compendium of Crop Genome Designing for Nutraceuticals;2023

2. Oil Palm: Genome Designing for Improved Nutritional Quality;Compendium of Crop Genome Designing for Nutraceuticals;2023

3. Revisiting the therapeutic potential of tocotrienol;BioFactors;2022-06-20

4. Bioactive compounds in oil palm;Achieving sustainable cultivation of oil palm Volume 2;2018-03-19

5. Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics;Drug Discovery Today;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3