Constitutive interpretation of arterial stiffness in clinical studies: a methodological review

Author:

Reesink Koen D.1,Spronck Bart2

Affiliation:

1. Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands

2. Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut

Abstract

Clinical assessment of arterial stiffness relies on noninvasive measurements of regional pulse wave velocity or local distensibility. However, arterial stiffness measures do not discriminate underlying changes in arterial wall constituent properties (e.g., in collagen, elastin, or smooth muscle), which is highly relevant for development and monitoring of treatment. In arterial stiffness in recent clinical-epidemiological studies, we systematically review clinical-epidemiological studies (2012–) that interpreted arterial stiffness changes in terms of changes in arterial wall constituent properties (63 studies included of 514 studies found). Most studies that did so were association studies (52 of 63 studies) providing limited causal evidence. Intervention studies (11 of 63 studies) addressed changes in arterial stiffness through the modulation of extracellular matrix integrity (5 of 11 studies) or smooth muscle tone (6 of 11 studies). A handful of studies (3 of 63 studies) used mathematical modeling to discriminate between extracellular matrix components. Overall, there exists a notable gap in the mechanistic interpretation of stiffness findings. In constitutive model-based interpretation, we first introduce constitutive-based modeling and use it to illustrate the relationship between constituent properties and stiffness measurements (“forward” approach). We then review all literature on modeling approaches for the constitutive interpretation of clinical arterial stiffness data (“inverse” approach), which are aimed at estimation of constitutive properties from arterial stiffness measurements to benefit treatment development and monitoring. Importantly, any modeling approach requires a tradeoff between model complexity and measurable data. Therefore, the feasibility of changing in vivo the biaxial mechanics and/or vascular smooth muscle tone should be explored. The effectiveness of modeling approaches should be confirmed using uncertainty quantification and sensitivity analysis. Taken together, constitutive modeling can significantly improve clinical interpretation of arterial stiffness findings.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3