Pivotal role of JNK-dependent FOXO1 activation in downregulation of kallistatin expression by oxidative stress

Author:

Shen Bo1,Chao Lee1,Chao Julie1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

Abstract

Oxidative stress has been shown to suppress endothelial nitric oxide synthase expression through activation of the transcription factor forkhead box O 1 (FOXO1) in cultured endothelial cells. We previously reported that circulating kallistatin levels are markedly reduced in rats with chronic oxidative organ damage. In this study, we investigated the potential role of oxidative stress in suppression of kallistatin expression via FOXO1 activation. In Dahl salt-sensitive (DSS) rats, we found that high salt intake induced a time-dependent correlation of increased thiobarbituric acid reactive substances (TBARS, an indicator of lipid peroxidation) with reduced serum kallistatin levels. Moreover, salt loading provoked an elevation of in situ aortic superoxide formation in association with reduced kallistatin levels. Expression of kallistatin was identified in cultured endothelial cells by immunocytochemistry and flow cytometry; however, H2O2dose-dependently lowered kallistatin mRNA and protein levels as determined by real-time PCR and Western blot, respectively. Downregulation of kallistatin synthesis by oxidative stress was restored by knockdown of FOXO1 expression with small-interfering RNA. H2O2rapidly induced FOXO1 nuclear translocation, but the effect was blocked by c-Jun NH2-terminal kinase (JNK) inhibitor. Inhibition of JNK by pharmacological inhibitor or small-interfering RNA reversed H2O2's effect on kallistatin expression in endothelial cells. This study demonstrates that an inverse relationship exists between oxidative stress and kallistatin levels in the circulation and blood vessels and that kallistatin expression is negatively regulated by oxidative stress via JNK-dependent FOXO1 activation in cultured endothelial cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3