Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle

Author:

Weber David S.,Rocic Petra,Mellis Adamantios M.,Laude Karine,Lyle Alicia N.,Harrison David G.,Griendling Kathy K.

Abstract

Increased reactive oxygen species (ROS) are implicated in several vascular pathologies associated with vascular smooth muscle hypertrophy. In the current studies, we utilized transgenic (Tg) mice (Tg p22smc) that overexpress the p22 phox subunit of NAD(P)H oxidase selectively in smooth muscle. These mice have a twofold increase in aortic p22 phox expression and H2O2 production and thus provide an excellent in vivo model in which to assess the effects of increased ROS generation on vascular smooth muscle cell (VSMC) function. We tested the hypothesis that overexpression of VSMC p22 phox potentiates angiotensin II (ANG II)-induced vascular hypertrophy. Male Tg p22smc mice and negative littermate controls were infused with either ANG II or saline for 13 days. Baseline blood pressure was not different between control and Tg p22smc mice. ANG II significantly increased blood pressure in both groups, with this increase being slightly exacerbated in the Tg p22smc mice. Baseline aortic wall thickness and cross-sectional wall area were not different between control and Tg p22smc mice. Importantly, the ANG II-induced increase in both parameters was significantly greater in the Tg p22smc mice compared with control mice. To confirm that this potentiation of vascular hypertrophy was due to increased ROS levels, additional groups of mice were coinfused with ebselen. This treatment prevented the exacerbation of hypertrophy in Tg p22smc mice receiving ANG II. These data suggest that although increased availability of NAD(P)H oxidase-derived ROS is not a sufficient stimulus for hypertrophy, it does potentiate ANG II-induced vascular hypertrophy, making ROS an excellent target for intervention aimed at reducing medial thickening in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3