Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions

Author:

Russell Kristoffer1,Eriksen Morten1,Aaberge Lars1,Wilhelmsen Nils1,Skulstad Helge1,Gjesdal Ola1,Edvardsen Thor1,Smiseth Otto A.12

Affiliation:

1. Institute for Surgical Research and Department of Cardiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway, and Medical Faculty, University of Oslo, Oslo, Norway; and

2. Center for Heart Failure Research and K. G. Jebsen Cardiac Research Centre, Oslo, Norway

Abstract

Left ventricular (LV) dyssynchrony reduces myocardial efficiency because work performed by one segment is wasted by stretching other segments. In the present study, we introduce a novel noninvasive clinical method that quantifies wasted energy as the ratio between work consumed during segmental lengthening (wasted work) divided by work during segmental shortening. The wasted work ratio (WWR) principle was studied in 6 anesthetized dogs with left bundle branch block (LBBB) and in 28 patients with cardiomyopathy, including 12 patients with LBBB and 10 patients with cardiac resynchronization therapy. Twenty healthy individuals served as controls. Myocardial strain was measured by speckle tracking echocardiography, and LV pressure (LVP) was measured by micromanometer and a previously validated noninvasive method. Segmental work was calculated by multiplying strain rate and LVP to get instantaneous power, which was integrated to give work as a function of time. A global WWR was also calculated. In dogs, WWR by estimated LVP and strain showed a strong correlation ( r = 0.94) and good agreement with WWR by the LV micromanometer and myocardial segment length by sonomicrometry. In patients, noninvasive WWR showed a strong correlation ( r = 0.96) and good agreement with WWR using the LV micromanometer. Global WWR was 0.09 ± 0.03 in healthy control subjects, 0.36 ± 0.16 in patients with LBBB, and 0.21 ± 0.09 in cardiomyopathy patients without LBBB. Cardiac resynchronization therapy reduced global WWR from 0.36 ± 0.16 to 0.17 ± 0.07 ( P < 0.001). In conclusion, energy loss due to incoordinated contractions can be quantified noninvasively as the LV WWR. This method may be applied to evaluate the mechanical impact of dyssynchrony.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3