Dynamics of PKA phosphorylation and gain of function in cardiac pacemaker cells: a computational model analysis

Author:

Behar Joachim1,Yaniv Yael1

Affiliation:

1. Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel

Abstract

Cardiac pacemaker cell function is regulated by a coupled-clock system that integrates molecular cues on the cell-membrane surface (i.e., membrane clock) and on the sarcoplasmic reticulum (SR) (i.e., Ca2+ clock). A recent study has shown that cotransfection of spontaneous beating cells (HEK293 cells and neonatal rat myocytes) with R524Q-mutant human hyperpolarization-activated cyclic nucleotide-gated molecules (the dominant component of funny channels) increases the funny channel's sensitivity to cAMP and leads to a decrease in spontaneous action potential (AP) cycle length (i.e., tachycardia). We hypothesize that in rabbit pacemaker cells, the same behavior is expected, and because of the coupled-clock system, the resultant steady-state decrease in AP cycle length will embody contributions from both clocks: the initial decrease in the spontaneous AP beating interval, arising from increased sensitivity of the f-channel to cAMP, will be accompanied by an increase in the adenylyl cyclase (AC)-cAMP-PKA-dependent phosphorylation activity, which will further decrease this interval. To test our hypothesis, we used the recently developed Yaniv-Lakatta pacemaker cell numerical model. This model predicts the cAMP signaling dynamics, as well as the kinetics and magnitude of protein phosphorylation in both normal and mutant pacemaker cells. We found that R524Q-mutant pacemaker cells have a shorter AP firing rate than that of wild-type cells and that gain in pacemaker function is the net effect of the R514Q mutation on the functioning of the coupled-clock system. Specifically, our results directly support the hypothesis that changes in Ca2+-activated AC-cAMP-PKA signaling are involved in the development of tachycardia in R524Q-mutant pacemaker cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3