Na+-induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia

Author:

Bohlen H. G.

Abstract

The coupled active transport of Na+ with sugars and amino acids could cause intestinal villus interstitial hyperosmolarity, which contributes to absorptive hyperemia. However, for the villus hyperosmolarity to cause a major vascular response, a mild-to-moderate hyperosmolarity must occur in the vicinity of the major resistance vessels of the submucosa. Interstitial Na+ activity was measured throughout the small intestinal wall of rats with monensin ion-selective electrodes during glucose absorption. In the upper half of villi, the resting [Na+] was 201 +/- 5 (SE) mM and increased to 267 +/- 6 mM during luminal exposure to 25-300 mg/100 ml glucose. The submucosal resting [Na+] was 144 +/- 1 mM and increased to 177 +/- 3 mM during luminal glucose exposure. The time courses of Na+ appearance and submucosal arterial dilation were almost identical. Calculations of tissue osmolarity indicate an increase in villus osmolarity of 150-200 mosM and 79-90 mosM in the submucosa during glucose absorption. The data are interpreted to indicate that villus hyperosmolarity during glucose absorption increased submucosal osmolarity and a naturally occurring osmotic dilatory component of absorptive hyperemia could exist.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3