Morphine mimics the antiapoptotic effect of preconditioning via an Ins(1,4,5)P3 signaling pathway in rat ventricular myocytes

Author:

Barrère-Lemaire Stéphanie,Combes Nicolas,Sportouch-Dukhan Catherine,Richard Sylvain,Nargeot Joël,Piot Christophe

Abstract

Morphine has cardioprotective effects against ischemic-reperfusion injuries. This study investigates whether morphine could mimic the antiapoptotic effect of preconditioning using a model of cultured neonatal rat cardiomyocytes subjected to metabolic inhibition (MI). To quantify MI-induced apoptosis, DNA fragmentation and mitochondrial cytochrome c release levels were measured by ELISA. MI-dependent DNA fragmentation was prevented by both Z-VAD-fmk (20 μM), a pan-caspase inhibitor, and cyclosporine A (CsA; 5 μM), a mitochondrial pore transition blocker, added during MI (36% and 54% decrease, respectively). MI-dependent cytochrome c release was not blocked by Z-VAD-fmk but was decreased (38%) by CsA during MI. Metabolic preconditioning (MIP) and preconditioning with morphine (1 μM) were also assessed. MI-dependent DNA fragmentation and cytochrome c release were prevented by MIP (40% and 45% decrease, respectively) and morphine (34% and 45%, respectively). The antiapoptotic effect of morphine was abolished by naloxone (10 nM), a nonselective opioid receptor antagonist, or xestospongin C (XeC, 400 nM), an inhibitor of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-mediated Ca2+ release. Ca2+ preconditioning, induced by increasing extracellular Ca2+ from 1.8 to 3.3 mM, mimicked the antiapoptotic effect of morphine on DNA fragmentation (24% decrease) and cytochrome c release (57% decrease). This effect mediated by extracellular Ca2+ was also abolished by XeC. Measurements of intracellular Ca2+ concentration using fura-2 microspectrofluorimetry showed that morphine induces Ins(1,4,5)P3-dependent Ca2+ transients abolished by 2-aminoethoxydiphenyl borate (2-APB), a cell-permeable Ins(1,4,5)P3 antagonist. These results suggest that morphine preconditioning prevents simulated ischemia-reperfusion-induced apoptosis via an Ins(1,4,5)P3 signaling pathway in rat ventricular myocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3