Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite

Author:

Quijano Celia,Castro Laura,Peluffo Gonzalo,Valez Valeria,Radi Rafael

Abstract

Hyperglycemic challenge to bovine aortic endothelial cells (BAECs) increases oxidant formation and cell damage that are abolished by MnSOD overexpression, implying mitochondrial superoxide (O2•−) as a central mediator. However, mitochondrial O2•−and its steady-state concentrations have not been measured directly yet. Therefore, we aimed to detect and quantify O2•−through different techniques, along with the oxidants derived from it. Mitochondrial aconitase, a sensitive target of O2•−, was inactivated 60% in BAECs incubated in 30 mM glucose (hyperglycemic condition) with respect to cells incubated in 5 mM glucose (normoglycemic condition). Under hyperglycemic conditions, increased oxidation of the mitochondrially targeted hydroethidine derivative (MitoSOX) to hydroxyethidium, the product of the reaction with O2•−, could be specifically detected. An 8.8-fold increase in mitochondrial O2•−steady-state concentration (to 250 pM) and formation rate (to 6 μM/s) was estimated. Superoxide formation increased the intracellular concentration of both hydrogen peroxide, measured as 3-amino-2,4,5-triazole-mediated inactivation of catalase, and nitric oxide-derived oxidants (i.e., peroxynitrite), evidenced by immunochemical detection of 3-nitrotyrosine. Oxidant formation was further evaluated by chloromethyl dichlorodihydrofluorescein (CM-H2DCF) oxidation. Exposure to hyperglycemic conditions triggered the oxidation of CM-H2DCF and was significantly reduced by pharmacological agents that lower the mitochondrial membrane potential, inhibit electron transport (i.e., myxothiazol), and scavenge mitochondrial oxidants (i.e., MitoQ). In BAECs devoid of mitochondria (rho0cells), hyperglycemic conditions did not increase CM-H2DCF oxidation. Mitochondrial O2•−formation in hyperglycemic conditions was associated with increased glucose metabolization in the Krebs cycle and hyperpolarization of the mitochondrial membrane.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference74 articles.

1. Estimation of H2 O2 gradients across biomembranes

2. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM.Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death.J Immunol162: 3356–3366, 1999.

3. Biochemistry and molecular cell biology of diabetic complications

4. The Pathobiology of Diabetic Complications

5. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3