Sarcoplasmic reticulum Ca2+ release is both necessary and sufficient for SK channel activation in ventricular myocytes

Author:

Terentyev Dmitry1,Rochira Jennifer A.1,Terentyeva Radmila1,Roder Karim1,Koren Gideon1,Li Weiyan1

Affiliation:

1. Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island

Abstract

SK channels are upregulated in human patients and animal models of heart failure (HF). However, their activation mechanism and function in ventricular myocytes remain poorly understood. We aim to test the hypotheses that activation of SK channels in ventricular myocytes requires Ca2+ release from sarcoplasmic reticulum (SR) and that SK currents contribute to reducing triggered activity. SK2 channels were overexpressed in adult rat ventricular myocytes using adenovirus gene transfer. Simultaneous patch clamp and confocal Ca2+ imaging experiments in SK2-overexpressing cells demonstrated that depolarizations resulted in Ca2+-dependent outward currents sensitive to SK inhibitor apamin. SR Ca2+ release induced by rapid application of 10 mM caffeine evoked repolarizing SK currents, whereas complete depletion of SR Ca2+ content eliminated SK currents in response to depolarizations, despite intact Ca2+ influx through L-type Ca2+ channels. Furthermore, voltage-clamp experiments showed that SK channels can be activated by global spontaneous SR Ca2+ release events Ca2+ waves (SCWs). Current-clamp experiments revealed that SK overexpression reduces the amplitude of delayed afterdepolarizations (DADs) resulting from SCWs and shortens action potential duration. Immunolocalization studies showed that overexpressed SK channels are distributed both at external sarcolemmal membranes and along the Z-lines, resembling the distribution of endogenous SK channels. In summary, SR Ca2+ release is both necessary and sufficient for the activation of SK channels in rat ventricular myocytes. SK currents contribute to repolarization during action potentials and attenuate DADs driven by SCWs. Thus SK upregulation in HF may have an anti-arrhythmic effect by reducing triggered activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3