Affiliation:
1. Department of Intensive Care, Erasme University Hospital, Brussels, Belgium.
Abstract
We investigated whether the Starling resistor model (Mitzner et al. J. Appl. Physiol. 51: 1065–1071, 1981) or a distensible vessel model (Haworth et al. J. Appl. Physiol. 70: 15–26, 1991) best describes pulmonary vascular pressure-flow (Q) relationships in embolic pulmonary hypertension. Mean pulmonary arterial pressure (Ppa)-Q plots at constant left atrial pressure (Pla) and Ppa-Pla plots at constant Q were investigated in seven dogs before and after 500-micron glass bead pulmonary embolism. Embolization to a mean angiographic obstruction of 78% increased the slope and extrapolated pressure intercept (P(i)) of Ppa-Q plots and increased the inflection point of Ppa-Pla plots, above which an increase in Pla is transmitted to Ppa in a ratio of approximately 1:1. The Starling resistor and the distensible vessel model provided a reasonably good fit to the Ppa-Q and Ppa-Pla coordinates before and after embolism. However, contrary to the prediction of the Starling resistor model, no correlation was found between the inflection point of Ppa-Pla plots and P(i). We therefore conclude that an increased closing pressure is unlikely to contribute to embolic pulmonary hypertension.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献