Three-dimensional localization and quantification of PAF-induced gap formation in intact venular microvessels

Author:

Jiang Yanyan,Wen Ke,Zhou Xueping,Schwegler-Berry Diane,Castranova Vince,He Pingnian

Abstract

Combining single-vessel perfusion technique with confocal microscopy, this study presents a new approach that allows three-dimensional visualization and quantification of endothelial gaps under experimental conditions identical to those used to measure permeability coefficients, endothelial calcium concentration, and nitric oxide production in individually perfused intact microvessels. This approach provides an efficient means for defining the transport pathways and cellular mechanisms of increased microvascular permeability during inflammation. Platelet-activating factor (PAF) was used to increase the permeability of individually perfused rat mesenteric venules. Fluorescent microspheres (FMs, 100 nm) were used as leakage markers, and confocal images were acquired at successive focal planes through the perfused microvessel. Perfusion of FMs under control conditions produced a thin, uniform layer of FMs in the vessel lumen, but in PAF-stimulated microvessels significant amounts of FMs accumulated at endothelial junctions. Reconstructed confocal images three-dimensionally delineated the temporal and spatial development of endothelial gaps in PAF-stimulated microvessels. The FM accumulation, quantified as the total fluorescence intensity per square micrometer of vessel wall, was 8.4 ± 1.8 times the control value within 10 min of PAF perfusion and declined to 5.0 ± 0.6 and 1.4 ± 0.2 times the control value when FMs were applied 30 and 60 min after PAF perfusion. The changes in the magnitude of FM accumulation closely correlated with the time course of PAF-induced increases in hydraulic conductivity ( Lp), indicating that the opening and closing of endothelial gaps contributed to the transient increase in Lp in PAF-stimulated microvessels. Electron microscopic evaluations confirmed PAF-induced gap formation and FM accumulation at endothelial clefts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3