Influence of accelerated arterial aging in growth-restricted cohorts on adult-onset cardiovascular diseases

Author:

Sehgal Arvind12ORCID,Allison Beth J.34ORCID,Crispi Fàtima56,Menahem Samuel78

Affiliation:

1. Monash Newborn, Monash Children’s Hospital, Melbourne, Victoria, Australia

2. Department of Paediatrics, Monash University, Melbourne, Victoria, Australia

3. The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia

4. Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia

5. BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain

6. Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain

7. Emeritus Head, Paediatric and Fetal Cardiac Units, Monash Health, Melbourne, Victoria, Australia

8. Murdoch Children’s Research Institute, University of Melbourne, Melbourne, Victoria, Australia

Abstract

Epidemiologists have long documented a higher risk of adult-onset cardiovascular diseases (CVDs) such as stroke, hypertension, and coronary artery disease, as well as mortality from circulatory causes in low birth-weight cohorts (poor in utero substrate supply). Utero-placental insufficiency and in utero hypoxemic state-induced alterations in arterial structure and compliance are important initiating factors for adult-onset hypertension. The mechanistic links between fetal growth restriction and CVD include decreased arterial wall elastin-to-collagen ratio, endothelial dysfunction, and heightened renin-angiotensin-aldosterone system (RAAS). Systemic arterial thickness on fetal ultrasound and vascular changes in placental histopathology in growth restricted cohorts indicate fetal/developmental origins of adult-onset circulatory diseases. Similar findings of impaired arterial compliance have been noticed across age groups (neonates through to adults). Such changes augment what occurs as “normal arterial aging,” resulting in accelerated arterial aging. Data from animal models suggest that hypoxemia-associated vascular adaptations enacted in utero are region specific, reflecting long-term vascular pathology. In this review, we explore the influence of birthweight and prematurity on blood pressure and arterial stiffness, demonstrating impaired arterial dynamics in growth-restricted cohorts across age groups, explain how early arterial aging influences adult-onset CVDs, describe pathophysiology data from experimental models and finally, discuss interventions which may influence aging by way of altering various cellular and molecular mechanisms of arterial aging. Age-appropriate interventions which have noted efficacy include prolonged breastfeeding and high polyunsaturated fatty acids dietary intake. Targeting the RAAS seems a promising approach. New data indicate activation of sirtuin 1 and maternal resveratrol may have beneficial effects.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiovascular decline in offspring during the perinatal period in an ovine model of fetal growth restriction;American Journal of Physiology-Heart and Circulatory Physiology;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3