Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity

Author:

Mathew Rajamma1

Affiliation:

1. Section of Pediatric Cardiology and Department of Physiology, Maria Fareri Children's Hospital/New York Medical College, Valhalla, New York

Abstract

Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate. Despite important advances in the field, the precise mechanisms leading to PH are not yet understood. Main features of PH are loss of vasodilatory response, the activation of proliferative and antiapoptotic pathways leading to pulmonary vascular remodeling and obstruction, elevated pressure and right ventricular hypertrophy, resulting in right ventricular failure and death. Experimental studies suggest that endothelial dysfunction may be the key underlying feature in PH. Caveolin-1, a major protein constituent of caveolae, interacts with several signaling molecules including the ones implicated in PH and modulates them. Disruption and progressive loss of endothelial caveolin-1 with reciprocal activation of proliferative pathways occur before the onset of PH, and the rescue of caveolin-1 inhibits proliferative pathways and attenuates PH. Extensive endothelial damage/loss occurs during the progression of the disease with subsequent enhanced expression of caveolin-1 in smooth muscle cells. This caveolin-1 in smooth muscle cells switches from being an antiproliferative factor to a proproliferative one and participates in cell proliferation and cell migration, possibly leading to irreversible PH. In contrast, the disruption of endothelial caveolin-1 is not observed in the hypoxia-induced PH, a reversible form of PH. However, proliferative pathways are activated in this model, indicating caveolin-1 dysfunction. Thus disruption or dysfunction of endothelial caveolin-1 leads to PH, and the status of caveolin-1 may determine the reversibility versus irreversibility of PH. This article reviews the role of caveolin-1 and cell membrane integrity in the pathogenesis and progression of PH.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3