Agonist-induced [Ca2+]i waves and Ca(2+)-induced Ca2+ release in mammalian vascular smooth muscle cells

Author:

Blatter L. A.1,Wier W. G.1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine, Baltimore 21201.

Abstract

Focal application of vasopressin to cultured vascular smooth muscle cells (A7r5 cells) elicits first a localized increase of intracellular Ca2+ concentration ([Ca2+]i) and then a wave of elevated [Ca2+]i that propagates at constant velocity throughout the cell. The cellular mechanisms of such complex spatiotemporal patterns of [Ca2+]i are of interest because they are involved fundamentally in cellular signal transduction in many types of cells. Vasopressin evoked a [Ca2+]i transient even in the absence of extracellular Ca2+, and intracellular perfusion with heparin completely blocked the response to vasopressin stimulation. Therefore the initial response to vasopressin reflects release of Ca2+ from an intracellular myo-inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ store. We tested four hypotheses on how a localized increase in [Ca2+]i propagates as a [Ca2+]i wave throughout the entire cell: the hypotheses distinguished 1) whether IP3 or Ca2+ is the primary intracellular messenger that diffuses, and 2) whether positive feedback on the release of intracellular Ca2+ (Ca2+i) is involved (further release of Ca2+ through activation of phospholipase C by Ca2+ and increased production of IP3 or by Ca(2+)-induced Ca2+ release). The results of various experimental interventions, which included probing Ca2+i stores (heparin, caffeine, and ryanodine), were compared with predictions from mathematical models for intracellular diffusion, release, and uptake of Ca2+. We conclude that in A7r5 smooth muscle cells, which have been stimulated focally with vasopressin, Ca2+ is released initially by IP3. The localized increase in [Ca2+]i then propagates throughout the cell as a [Ca2+]i wave. Ca2+ activates its own release, through Ca(2+)-induced release of Ca2+, by diffusing to distant Ca(2+)-release sites.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3