Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion

Author:

Chen Qun1ORCID,Younus Masood1,Thompson Jeremy1,Hu Ying1,Hollander John M.2,Lesnefsky Edward J.1345

Affiliation:

1. Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia

2. Division of Exercise Physiology, Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia

3. Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia

4. Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia

5. McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia

Abstract

Cardiac ischemia-reperfusion (I/R) damages the electron transport chain (ETC), causing mitochondrial and cardiomyocyte injury. Reversible blockade of the ETC at complex I during ischemia protects the ETC and decreases cardiac injury. In the present study, we used an unbiased proteomic approach to analyze the extent of ETC-driven mitochondrial injury during I/R. Isolated-perfused mouse (C57BL/6) hearts underwent 25-min global ischemia (37°C) and 30-min reperfusion. In treated hearts, amobarbital (2 mM) was given for 1 min before ischemia to rapidly and reversibly block the ETC at complex I. Mitochondria were isolated at the end of reperfusion and subjected to unbiased proteomic analysis using tryptic digestion followed by liquid chromatography-mass spectrometry with isotope tags for relative and absolute quantification. Amobarbital treatment decreased cardiac injury and protected respiration. I/R decreased the content ( P < 0.05) of multiple mitochondrial matrix enzymes involved in intermediary metabolism compared with the time control. The contents of several enzymes in fatty acid oxidation were decreased compared with the time control. Blockade of ETC during ischemia largely prevented the decreases. Thus, after I/R, not only the ETC but also multiple pathways of intermediary metabolism sustain damage initiated by the ETC. If these damaged mitochondria persist in the myocyte, they remain a potent stimulus for ongoing injury and the transition to cardiomyopathy during prolonged reperfusion. Modulation of ETC function during early reperfusion is a key strategy to preserve mitochondrial metabolism and to decrease persistent mitochondria-driven injury during longer periods of reperfusion that predispose to ventricular dysfunction and heart failure. NEW & NOTEWORTHY Ischemia-reperfusion (I/R) damages mitochondria, which could be protected by reversible blockade of the electron transport chain (ETC). Unbiased proteomics with isotope tags for relative and absolute quantification analyzed mitochondrial damage during I/R and found that multiple enzymes in the tricarboxylic acid cycle, fatty acid oxidation, and ETC decreased, which could be prevented by ETC blockade. Strategic ETC modulation can reduce mitochondrial damage and cardiac injury.

Funder

American Heart Association Scientist Development Grant

American Heart Association Grant in Aid

U.S. Department of Veterans Affairs (VA)

U.S. National Institues of Health

U.S. National Institues of Health CTSA

Virginia Commonwealth Univ. CCTR Endowment Fund

Pauley Heart Center, Virginia Commonwealth Univ.

Pauley Heart Center, Virginis Commonwealth Univ.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3