Dynamic remodeling of K+ and Ca2+ currents in cells that survived in the epicardial border zone of canine healed infarcted heart

Author:

Dun Wen1,Baba Shigeo1,Yagi Takuya1,Boyden Penelope A.1

Affiliation:

1. Department of Pharmacology, Center of Molecular Therapeutics, Columbia University, New York, New York 10032

Abstract

Action potentials (APs) of the epicardial border zone (EBZ) cells from the day 5 infarcted heart continue to be altered by day 14 postocclusion, namely, they shortened. However, by 2 mo, EBZ APs appear “normal,” yet conduction of wave fronts remains abnormal. We hypothesize that the changes in transmembrane APs are due to a change in the distribution of ion channels in either density or function. Thus we focused on the changes in Ca2+ and K+ currents in cells isolated from the 14-day (IZ14d) and 2-mo (IZ2m) EBZ and compared them with those occurring in cells from the same hearts but remote (Rem) from the EBZ. Whole cell voltage-clamp techniques were used to measure and compare Ca2+ and K+ currents in cells from the different groups. Ca2+ current densities remain reduced in cells of the 14-day and 2-mo infarcted heart and the kinetic changes previously identified in the 5-day heart begin to, but do not recover to, cells from noninfarcted epicardium (NZ) values. Importantly, ICa,L in both the EBZ and Rem regions still show a slowed recovery from inactivation. Furthermore, during the remodeling process, there is an increased expression of T-type Ca2+ currents, but only regionally, and only within a specific time window postmyocardial infarction (MI). Regional heterogeneity in β-adrenergic responsiveness of ICa,L exists between EBZ and remote cells of the 14-day hearts, but this regional heterogeneity is gone in the healed infarcted heart. In IZ14d, the transient outward K+ current ( Ito) begins to reemerge and is accompanied by an upregulated tetraethylammonium-sensitive outward current. By 2-mo postocclusion, Ito and sustained outward K+ current have completed the reverse remodeling process. During the healing process post-MI, canine epicardial cells downregulate the fast Ito but compensate by upregulating a K+ current that in normal cells is minimally functional. For recovering ICa,L of the 14-day and 2-mo EBZ cells, voltage-dependent processes appear to be reset, such that ICa,L “window” current occurs at hyperpolarized potentials. Thus dynamic changes in both Ca2+ and K+ currents contribute to the altered AP observed in 14-day fibers and may account for return of APs of 2 mo EBZ fibers.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3