A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces

Author:

Liu Hui12ORCID,Wang Chunjie1ORCID,Jiang Xin3ORCID,Khishe Mohammad4ORCID

Affiliation:

1. 1 School of Mathematics and Statistics , Changchun University of Technology , Changchun 130012 , Jilin , China

2. 2 School of Economics and Management , Changchun University of Technology , Changchun 130012, Jilin , China

3. 3 Department of Biochemistry , College of Basic Medical Sciences, Jilin University , Changchun 130021, Jilin , China

4. 4 Department of Electrical Engineering , Imam Khomeini Marine Science University , Nowshahr , Iran

Abstract

Abstract Accurate and efficient COVID-19 diagnosis is crucial in clinical settings. However, the limited availability of labeled data poses a challenge for traditional machine learning algorithms. To address this issue, we propose Turning Point (TP), a few-shot learning (FSL) approach that leverages high-level turning point mappings to build sophisticated representations across previously labeled data. Unlike existing FSL models, TP learns using quasi-configured topological spaces and efficiently combines the outputs of diverse TP learners. We evaluated TPFSL using three COVID-19 datasets and compared it with seven different benchmarks. Results show that TPFSL outperformed the top-performing benchmark models in both one-shot and five-shot tasks, with an average improvement of 4.50% and 4.43%, respectively. Additionally, TPFSL significantly outperformed the ProtoNet benchmark by 12.966% and 11.033% in one-shot and five-shot classification problems across all datasets. Ablation experiments were also conducted to analyze the impact of variables such as TP density, network topology, distance measure, and TP placement. Overall, TPFSL has the potential to improve the accuracy and speed of diagnoses for COVID-19 in clinical settings and can be a valuable tool for medical professionals.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3