Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation

Author:

Zhang Junming1234ORCID,Dong Hao512ORCID,Gao Jinfeng12ORCID,Yao Ruxian12ORCID,Li Gangqiang12ORCID,Wu Haitao1ORCID

Affiliation:

1. 1 College of Computer and Artificial Intelligence , Huanghuai University , Henan , China

2. 2 Henan Key Laboratory of Smart Lighting , Henan , China

3. 3 Henan Joint International Research Laboratory of Behavior Optimization Control for Smart Robots, Henan , China

4. 4 Zhumadian Artificial Intelligence & Medical Engineering Technical Research Centre , Henan , China

5. 5 School of Computer Science , Zhongyuan University of Technology , Henan , China

Abstract

Abstract Atrial fibrillation is a common cardiac arrhythmia, and its incidence increases with age. Currently, numerous deep learning methods have been proposed for AF detection. However, these methods either have complex structures or poor robustness. Given the evidence from recent studies, it is not surprising to observe the limitations in the learning performance of these approaches. This can be attributed to their strictly homogenous conguration, which solely relies on the linear neuron model. The limitations mentioned above have been addressed by operational neural networks (ONNs). These networks employ a heterogeneous network configuration, incorporating neurons equipped with diverse nonlinear operators. Therefore, in this study, to enhance the detection performance while maintaining computational efficiency, a novel model named multi-scale Self-ONNs (MSSelf-ONNs) was proposed to identify AF. The proposed model possesses a significant advantage and superiority over conventional ONNs due to their self-organization capability. Unlike conventional ONNs, MSSelf -ONNs eliminate the need for prior operator search within the operator set library to find the optimal set of operators. This unique characteristic sets MSSelf -ONNs apart and enhances their overall performance. To validate and evaluate the system, we have implemented the experiments on the well-known MIT-BIH atrial fibrillation database. The proposed model yields total accuracies and kappa coefficients of 98% and 0.95, respectively. The experiment results demonstrate that the proposed model outperform the state-of-the-art deep CNN in terms of both performance and computational complexity.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3