Therapeutic potential of gasotransmitters for cold stress-related cardiovascular disease

Author:

Sun Haijian1,Nie Xiaowei2,Yu Kangying3,Bian Jinsong45

Affiliation:

1. School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , China

2. Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital , Southern University of Science and Technology) , Shenzhen , China

3. Nursing School of Wuxi Taihu University , Wuxi , China

4. Department of Pharmacology, School of Medicine , Southern University of Science and Technology , Shenzhen , China

5. National University of Singapore (Suzhou) Research Institute , Suzhou , China

Abstract

Abstract Growing evidence has shown that exposure to low ambient temperature poses a huge challenge to human health globally. Actually, cold stress is closely associated with a higher incidence of cardiovascular morbidity and mortality in winter or in cold regions. Cellular and molecular mechanisms underlying cardiovascular complications in response to cold exposure have yet to be fully clarified. Considering that cold exposure is an important risk of cardiovascular complications, it is necessary to clarify the molecular mechanism of cold stress-induced cardiovascular diseases and to develop effective intervention strategies. Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are well-known gasotransmitters that are endogenously produced in many biological systems. Accumulating studies have demonstrated that these gasotransmitters play a critical role in a wide spectrum of physiological and/or pathophysiological processes by regulating numerous signaling pathways. These gas signal molecules are emerging as important players in cardiovascular homeostasis, and disruption of these gasotransmitters is critically implicated in cardiovascular anomalies, such as hypertension, atherosclerosis, myocardial ischemia, heart failure, and stroke. Also, evidence is emerging that H2S, NO, and CO may be involved in the pathologies of cold stress-induced cardiovascular ailments. In this review, we aim to highlight and discuss the recent advances towards the development of gasotransmitters-based therapeutics for cold stress-related cardiovascular pathogenesis. We believe that the effects of H2S, NO, and CO on cardiovascular regulation under cold environment will attract tremendous interest in the near future as they serve as novel regulators of cardiovascular biology in cold environment.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3