Comparison of Mainstream Smoke Composition from CR20 Resin Filter and Empty-Cavity Filter Cigarettes by Headspace SPME Coupled with GC×GC TOFMS and Chemometric Analysis

Author:

Brokl Michał1,Morales Valle1,Bishop Louise1,Wright Christopher G.1,Liu Chuan1,Focant Jean-François2,Nicol James3,McAdam Kevin G.4

Affiliation:

1. Group Research and Development, British American Tobacco , Regents Park Road, Southampton SO15 8TL , UK

2. CART - Chemistry Department, Organic & Biological Analytical Chemistry , University of Liège , Liège , Belgium

3. JTN Consulting Limited, 272 Bath Street, Glasgow , Scotland, G2 4JR , UK

4. McAdam Scientific Ltd., 50 Leigh Rd, Eastleigh , SO50 9DT , UK

Abstract

Summary A previously established method based on headspace solidphase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOFMS) has been used to evaluate and compare the profiles of semi-volatile compounds present in mainstream tobacco smoke particulate matter trapped on glass fibre filters for two types of cigarettes differing only in filter design. In the first cigarette, the filter cavity contained approximately 60 mg of a weakly basic macroporous polystyrene resin cross-linked with divinyl benzene and with surface amine functionality (CR20), whereas in the second cigarette, it was empty. Relative quantitative analysis, chemical identification, and chemical grouping allowed the use of both parametric and non-parametric analyses to identify differences in the chemical composition of the smokes from these cigarettes. The analysis demonstrated that in addition to the selective partial removal of volatile carbonyls and HCN demonstrated previously, CR20 selectively, but incompletely removed 316 compounds from the particulate phase of cigarette smoke, mainly aryl and aromatic hydrocarbons as well as other more volatile species. In contrast, the relative proportion of amines, hydroxylated aromatic compounds and less volatile species was increased in the smoke from the cigarette containing CR20 in the filter. Our findings show that high resolution GC techniques combined with mass spectrometry and chemometric approaches are powerful tools for deconvoluting the complexity of combustion aerosols, as well as helping to identify changes in chemical composition resulting from modifications to cigarette designs. [Beitr. Tabakforsch. Int. 28 (2019) 231–249]

Publisher

Walter de Gruyter GmbH

Reference41 articles.

1. 1. Rodgman, A. and T.S. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke; 2nd Edition, CRC Press, Boca Raton, FL, USA, 2013. ISBN 9781466515482

2. 2. International Agency for Research Center (IARC): Tobacco Smoke and Involuntary Smoking; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 83; IARC, Lyon, France, 2004.

3. 3. International Agency for Research Center (IARC): Personal Habits and Indoor Combustions; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100E, IARC, Lyon, France, 2012. ISBN-13: 978-9283213222

4. 4. Fowles, J. and E. Dybing: Application of Toxicological Risk Assessment Principles to the Chemical Constituents of Cigarette Smoke; Tob. Control 12 (2003) 424–430. DOI: 10.1136/tc.12.4.42410.1136/tc.12.4.424

5. 5. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy: The Less Harmful Cigarette: A Controversial Issue. A Tribute to Ernst L. Wynder; Chem. Res. Toxicol. 14 (2001) 767–790. DOI: 10.1021/tx000260u10.1021/tx000260u

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3