A study of sample mineralization methods for arsenic analysis of blood and urine by hydride generation and graphite furnace atomic absorption spectrometry

Author:

Sysalova Jirina1,Spevackova Vera2

Affiliation:

1. 1Institute of Analytical Chemistry, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic

2. 2National Institute of Public Health, Srobarova 48, 100 42, Prague 10, Czech Republic

Abstract

AbstractMineralization procedures for blood and urine suitable for the determination of arsenic by Hydride Generation Atomic Absorption Spectrometry (HGAAS) are studied on model samples, and the results are utilized in biological monitoring investigations. The objective of this work is to obtain good total As recoveries for both matrices regardless of added As species (As(III), As(V), DMA, MMA, AsB, or AsC). Prior to the HGAAS analyses, preparation procedures were controlled under optimised conditions by graphite furnace atomic absorption spectrometry (GFAAS). Two preparation procedures for urine give As recoveries close to 100% by HGAAS: a) dry ashing at 420°C with Mg(NO3)2 on a hot plate, and b) microwave oven decomposition with (NH4)2S2O8. For blood samples, As recoveries by HGAAS range between 95 and 108% for all species when using dry ashing after a pretreatment of samples with HNO3 and H2O2 in a microwave oven. Wet digestion with (NH4)2S2O8 in a microwave oven gives recoveries very near 100% for Asinorg. and MMA. For other As species in spiked blood samples, recoveries of less than 20% As are found. Precision and detection limits obtained by both techniques are evaluated as well. For arsenic concentrations of 20 μg dm−3 or more in blood and urine, a chemical modifier is recommended for GFAAS analysis; it may or may not be proceeded by a mineralization step. For low As levels encountered in the unexposed population, the HGAAS technique provides reliable results only if a very complete mineralization procedure is used.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3