Effects of melatonin on lettuce plant growth, antioxidant enzymes and photosynthetic pigments under salinity stress conditions

Author:

EL-Bauome Hemat A.1,Doklega Samar M.1,Saleh Said A.2,Mohamed Ahmed S.2,Suliman Ahmad A.2,Abd El-Hady Mahmoud A.M.3

Affiliation:

1. 1 Vegetables and Floriculture Department, Faculty of Agriculture, Mansoura University , Mansoura , Egypt

2. 2 Horticultural Crops Technology Department, Agricultural and Biology Research Institute, National Research Centre , Dokki , Giza , Egypt

3. 3 Horticulture Department, Faculty of Agriculture, Damietta University , Damietta , Egypt

Abstract

ABSTRACT Salinity is one of the most important abiotic stresses that significantly decreases the productivity of agricultural crops. Melatonin (MT) acts as an antioxidant and plays a vital role in overcoming oxidative damage. However, previous literature has not provided a clear understanding of the impact of MT on lettuce plants under salinity stress. So, we investigated the effect of exogenous MT at 0 μM, 50 μM, 100 μM and 150 μM on lettuce plants grown under salinity stress (0 mM NaCl, 50 mM NaCl and 100 mM NaCl) with respect to vegetative growth, photosynthetic pigments, relative water content (RWC), electrolyte leakage (EL), malondialdehyde (MDA), H2O2, O2 •- and antioxidants enzymes. Results showed that NaCl stress significantly decreased vegetative growth, RWC and photosynthetic pigments and in contrast enhanced dry matter, EL, MDA, H2O2, O2 •-, Na+, Cl-, peroxidase (POD), superoxide dismutase (SOD) and glutathione reductase (GR) of lettuce plants compared to non-salinized control. The results demonstrated that under salinity conditions, foliar applications of MT significantly alleviated the harmful effects of salinity and increased number of leaves, leaf area, fresh weight, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids and RWC in comparison to untreated plants (control). Meanwhile, dry matter, MDA, H2O2, O2 •-, Na+, Cl-, POD, SOD and GR were significantly decreased compared to untreated lettuce plants. In this respect, spraying MT at 150 μM ranked the first, then 100 μM, compared to the lower concentration (50 μM). In conclusion, MT application can be used to alleviate harmful effects of salinity stress.

Publisher

Walter de Gruyter GmbH

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3