Affiliation:
1. Arab Academy for Science, Technology and Maritime Transport , Alexandria , Egypt
2. University of Maribor /Faculty of Logistics , Celje , Slovenia
Abstract
Abstract
Electric load forecasting (ELF) is a vital process in the planning of the electricity industry and plays a crucial role in electric capacity scheduling and power systems management and, therefore, it has attracted increasing academic interest. Hence, the accuracy of electric load forecasting has great importance for energy generating capacity scheduling and power system management. This paper presents a review of forecasting methods and models for electricity load. About 45 academic papers have been used for the comparison based on specified criteria such as time frame, inputs, outputs, the scale of the project, and value. The review reveals that despite the relative simplicity of all reviewed models, the regression analysis is still widely used and efficient for long-term forecasting. As for short-term predictions, machine learning or artificial intelligence-based models such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Fuzzy logic are favored.
Subject
General Economics, Econometrics and Finance
Reference135 articles.
1. [1] Y. Lin, H. Luo, D. Wang, H. Guo, and K. Zhu, “An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting,” Energies, vol. 10, no. 1186, 2017.10.3390/en10081186
2. [2] M. D. Reddy, “Load Forecasting using Linear Regression Analysis in Time series model for RGUKT, R.K. Valley Campus HT Feeder,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 5, 2017.10.17577/IJERTV6IS050443
3. [3] G. Nalcaci, A. Özmen, and G. W. Weber, “Long-term Load Forecasting: Models Based on MARS, ANN and LR methods,” Central European Journal of Operations Research (CEJOR), Springer-Verlag GmbH Germany, vol. 27, no. 2019, pp. 1033–1049, 2018.
4. [4] E. Almeshaiei and H. Soltan, “A Methodology for Electric Power Load Forecasting,” Alexandria Engineering Journal, vol. 50, no. 2011, pp. 137–144, 2011.
5. [5] J. Zhang, “Research on Power Load Forecasting Based on the Improved Elman Neural Network,” The Italian Association of Chemical Engineering (AIDIC), vol. 51, no. 2016, pp. 589-594, 2016.
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献