Influence of fused deposition modelling printing parameters on tablet disintegration times: a design of experiments study

Author:

Kreft Klemen12ORCID,Stanić Tijana2,Perhavec Petra2,Dreu Rok1ORCID,Lavrič Zoran1ORCID

Affiliation:

1. University of Ljubljana, Faculty of Pharmacy , Ljubljana , Slovenia

2. Lek Pharmaceuticals d.d., a Sandoz Company , Ljubljana , Slovenia

Abstract

Abstract Despite the importance of process parameters in the printing of solid dosage forms using fused deposition modelling (FDM) technology, the field is still poorly explored. A design of experiment study was conducted to understand the complete set of process parameters of a custom developed FDM 3D printer and their influence on tablet disintegration time. Nine settings in the Simplify 3D printing process design software were evaluated with further experimental investigation conducted on the influence of infill percentage, infill pattern, nozzle diameter, and layer height. The percentage of infill was identified as the most impactful parameter, as increasing it parabolically affected the increase of disintegration time. Furthermore, a larger nozzle diameter prolonged tablet disintegration, since thicker extruded strands are generated through wider nozzles during the printing process. Three infill patterns were selected for in-depth analysis, demonstrating the clear importance of the geometry of the internal structure to resist mechanical stress during the disintegration test. Lastly, layer height did not influence the disintegration time. A statistical model with accurate fit (R 2 = 0.928) and predictability (Q 2 = 0.847) was created. In addition, only the infill pattern and layer height influenced both the uniformity of mass and uniformity of the disintegration time, which demonstrates the robustness of the printing process.

Publisher

Walter de Gruyter GmbH

Subject

Pharmaceutical Science,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3