Affiliation:
1. Department of Marine Biology, Faculty of Marine Sciences , King Abdulaziz University , Jeddah , Jeddah Saudi Arabia
Abstract
Abstract
Heavy metals are major stressors for benthic macroalgal communities in marine ecosystems. In this study, the effects of copper and cadmium on some physiological parameters along with antifouling defense of the marine macroalga Ulva reticulata were assessed under laboratory conditions. Macroalgal samples were treated with three concentrations (1 mg l−1, 3 mg l−1 and 5 mg l−1) of copper and cadmium for 2 and 7 days. After treatment, algal samples were analyzed for chlorophyll-a, carotenoid, total polyphenol and total antioxidant capacity. Also, algal extracts were tested against biofilm-forming bacteria strains to understand differences in antifouling activity. The results indicated that exposure of U. reticulata to copper and cadmium, on the one hand, induced protective mechanisms such as total phenol production and antioxidant capacity against metal stress and, on the other hand, reduced photosynthesis. While the extract obtained from control algal samples showed a strong inhibitory effect on the growth of biofilm-forming bacteria, treatment with heavy metals resulted in reduced antibiofilm activity. In general, the results revealed that exposure of macroalgae to heavy metals can affect antifouling defense traits in addition to changes in photosynthetic pigment content.
Reference76 articles.
1. Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G. & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30: 161–175. DOI: 10.3109/07388550903524243.
2. Alsaafani, M.A., Alraddadi, T.M. & Albarakati, A.M. (2017). Seasonal variability of hydrographic structure in Sharm Obhur and water exchange with the Red Sea. Arab. J. Geosci. 10: 315. DOI: 10.1007/s12517-017-3108-8.
3. Balqadi, A.A., Salama, A.J. & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia 60: 219–231. DOI: 10.1016/j.oceano.2017.10.006.
4. Brodie, J., Maggs, C.A. & John, D.M. (2007). Green seaweeds of Britain and Ireland. pp. [i–v], vi–xii, 1–242, 101 figs. London: British Phycological Society.
5. Chan, S.M., Wang, W. & Ni, I. (2003). The uptake of Cd, Cr, and Zn by the macroalga Enteromorpha crinita and subsequent transfer to the marine herbivorous rabbitfish, Siganus canaliculatus. Arch. Environ. Contam. Toxicol. 44: 298–306.